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 Abstract 

Detection of the weak signature of degradation of the Reactor Coolant Pump (RCP) at early stage gives more time for 

maintenance reaction, safety decision-making and also provides economic benefits. An integrated and improved method to 

detect and identify abnormality using continuous wavelet transform based sparse code shrinkage de-noising algorithm is 

suggested in this work. For RCP roller bearings, periodic impulses indicate the occurrence of faults in the components. 

However, it is difficult to detect the impulses because they are rather weak and are often immersed in heavy noise. Existing 

wavelet threshold de-noising methods do not work well because they use orthogonal wavelets, which do not match the 

impulse very well and do not utilize prior information on the impulse. Therefore, in order to suppress any undesired 

information and highlight the features of interest, a new method for wavelet threshold de-noising is proposed in this paper. It 

employs an adapted Morlet wavelet as the basic wavelet for matching the impulse and also uses the Maximum Likelihood 

Estimation (MLE) for thresholding by utilizing prior information on the probability density function (pdf) of the impulse. By 

using MLE de-noising method, the inspected signal is analyzed in a more exact way even with a very low signal-to-noise 

ratio. 

1. INTRODUCTION 

NUR Reactor reached its first criticality in 1989. In the context of its modernization 

program and ageing management for its safety operation, increasing its availability and for 

extending its useful life, it was decided, among others actions, an improvement of the 

installation maintenance activities. In this way it was recommended a development of a 

strategy of vibration monitoring for the reactor primary coolant pump: first due to a safety 

necessity, in order to reduce the LOFA probability as it is explained in the installation Safety 

Analysis Report, and then to increase the reactor availability by the early detection of 

mechanical problems. The objective of this work was to create a diagnostic and vibration 

monitoring strategy for the hydraulic pump Reactor primary cooling loop. This strategy 

includes the determination of the defects to be observed and the vibration signal analysis 

techniques to be used. Usually, vibration signals are acquired from accelerometers mounted 

on the outer surface of a bearing case. The signals include vibrations from bearings, and from 

many other running parts. Damage to these parts usually causes the vibration level of the 

system to increase. However, the signals are always complex and it is difficult to diagnose a 

machine from such vibration signals. Thereby, until now, the Fast Fourier Transform (FFT) 

has been widely used in the vibration analysis of rotating machines and it is considered as a 

deterministic tool. Nevertheless, spectral analysis based on FFT has limitations; since weak 

signals, non-stationary signals and the effect of time-varying load can not be highlighted. 
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Besides, periodic impulses which indicate damaged races or rollers of roller bearings cannot 

be detected easily with the frequency spectrum because they are short in time duration and 

usually hidden in noises unless the crack is very big. Hence, de-noising and extraction of the 

weak signature from the noisy signal are crucial to fault prognostics, in which case features 

are often very weak and masked by the background noise. Consequently, in order to 

compensate spectral analysis weakness, the following method based on time–frequency 

analysis is adopted.  

2. REVIEW OF WAVELET TRANSFORM 

The wavelet transform of a finite energy signal  ( ) with the analyzing wavelet  ( ) is 

the convolution of  ( ) with a scaled and conjugated wavelet. Let     ( )  the daughter 

wavelets of the mother wavelet  ( ), which is derived by varying both the scale factor   and 

the shifting parameter  :  

    ( )  
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The wavelet transform is defined as: 
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  (   ) represents the wavelet transforming coefficients derived from the signal  ( ) . The 

parameters of translation    and dilation  , may be continuous or discrete, the asterisk stands 

for complex conjugate. The factor  √ ⁄   is used to ensure energy preservation.    ( ) 
indicates that the wavelet analysis is a time-frequency analysis, or a time-scaled analysis of a 

signal through dilation and translation. Wavelet transform is also reversible, which provides 

the possibility to reconstruct the original signal. A universal reconstruction equation for any 

type of wavelet is [5]:    
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3. MECHANICAL IMPULSE MODELLING   

The system subjected to an impact load may be formulated as a single degree of 

freedom system which has the form of [9], [10]:  

 
   

   
  

  

  
      ( )                           ( )  {

                    
                 

                   ( ) 

Where   represents the displacement,   the concentrated mass,   the damping coefficient,   

the stiffness of the system,   is a constant, and    the instant impulse. The solution for    ( ) 
is [9], [10]:   

 ( )  
     
   

         (   )  
  

(    )   
         (     )                ( ) 

   and    indicate the initial displacement and velocity of the system, respectively. When the 

initial displacement and velocity of the system are zero    ( ) can be rewritten as [9], [7]:   
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4. CHOICE OF THE ANALYZING WAVELET   

   ( ) indicates that the impulsive feature, which is caused by external impact load, is 

characterized by an oscillation with decaying amplitude. So according to the matching 

mechanism of wavelet transform, Morlet wavelet which is presented in Figure 2, could be a 

more suitable wavelet function for extracting such types of features because Morlet wavelet 

has a more similar shape to the impulsive feature. Morlet wavelet is derivative of a Gaussian 

function, so these wavelets have Gaussian window in frequency domain. In time domain, the 

Morlet wavelet can be expressed as [3]:     

 ( )       
  ⁄                                                                 ( ) 

Where    is the central wavelet frequency. It is shown that the function decays exponentially 

on both sides. The modified Morlet wavelet function used in this paper is:    

 ( )       
    ⁄ (            (  )

  ⁄ )                                  ( ) 

The time expression of the Morlet wavelet can be further transformed to the frequency 

domain by applying Fourier transform, as shown below:  

 ( )    ( )  √  (    (    )
    ⁄      ( 

    
 )    ⁄ )                    ( ) 

Which is an impulse frequency response with arbitrary centre frequency   .   is the shape 

parameter. When we let    ; the frequency response is  ( )   . It is implied 

that ∫  ( )  
 

  
  . Thus, the mother analysis wavelet  ( ) satisfies the admissibility 

conditions. By applying the Fourier Parseval formula, wavelet transform of a signal  ( ) 
using Morlet wavelet as analysis function can take the following alternative form:    

  (   )  
√  

√  
∫  ( )(    (     )

    ⁄      ( 
      

 )    ⁄ )      
  

  

         (  ) 

It is obvious from    ( ) that the shape of the basic wavelet is controlled by parameter 

β. When β tends to be infinite, the Morlet wavelet becomes a Dirac function with the finest 

time resolution. With β tending to be 0, the Morlet wavelet becomes a cosine function which 

has the finest frequency resolution. Therefore, there is always an optimal β with the best time-

frequency resolution for a certain signal localized in the time-frequency plane. An approach to 

find the appropriate parameters   that can construct an optimal wavelet transform is proposed 

in the next section. This modified Morlet wavelet function offers a better compromise in 

terms of localisation, in both time and frequency for a signal, than the traditionally Morlet 

wavelet function.    

5. OPTIMAL MORLET WAVELET FOR IMPULSE DETECTION   

The sparseness of wavelet coefficients is often used as the rule for evaluating the 

efficiency of wavelet transforms. The wavelet corresponding to the fewest and dominant 

wavelet transformation coefficients of a signal is ideal. Therefore, a variety of sparseness 

measurement criteria are proposed by researchers, such as:    norm,    norm, Shannon 

entropy and kurtosis, etc. Among them, Shannon entropy is one of the well-adopted 
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sparseness criterion. Thereby, wavelet transform coefficients with minimal Shannon entropy 

can be treated as the sparsest result. Therefore, the corresponding shape factor   can be 

adopted as the optimal result. Shannon entropy is defined as [6]:  

    ∑         
 

                  ∑  

 

   

                       
   
∑    

                   (  ) 

Where    are wavelet coefficients. For different scales, these coefficients could be calculated 

from    (  ) which is convolution of  ( ) and  ( ).  

6. SPARSE CODE SHRINKAGE THRESHOLD USING THE OPTIMAL MORLET 

WAVELET TRANSFORM  

The underlying model for the noisy signal is basically of the following form [3], 

 ( )   ( )    ( ). The objective of de-noising is to suppress the noise part  ( ) of the 

signal  ( ) and to recover  ( ). The basic idea behind wavelet thresholding is that the energy 

of the signal to be identified will concentrate on a few wavelet coefficients while the energy 

of noise will spread throughout all wavelet coefficients.  

In view of this, Hyvärinen has proposed a so-called sparse code shrinkage method 

‘SCS’ to estimate non-Gaussian data under noisy conditions. It is based on the MLE principle 

and is successfully used for image de-noising. It demands that the non-Gaussian variable 

follow a sparse distribution. The pdf of a sparse distribution is characterized with a spike at 

point zero.  To represent a sparse distribution, Hyvärinen proposes the following function 

form for a very sparse pdf [1], [2]:   

 ( )  
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Where:   √ {  } is the standard deviation of the impulse to be isolated and   
    √ (   )

    
 is the parameter controlling the sparseness of the pdf with       ( )

 . For an 

impulse whose pdf can be represented by    (  ), Hyvärinen proposes the following 

thresholding rule [1], [2]:    

 ( )      ( )   (  
| |    

 
 
 

 
√(| |    )     (   ))                  (  ) 

Where:    √ (   )  ,    is the standard deviation of the noise. The function  ( ) in 

   (  ) does not change much when   and   vary within a reasonable range [1]. The 

reconstruction results from shrunken wavelet coefficients using the thresholding rule given in 

   (  ) represent an approximation to the impulse.  

7. SIMULATION STUDY 

The impulses generated by damaged mechanical components often exhibit the shapes 

shown in Figure 1.a.  
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  (a)                                  (b) 

Fig. 1a. Simulated impulses; 1b. Simulated impulses with heavy background Gaussian noise. 

The signal shown in Fig. 1.b is used to test the effectiveness of the proposed method to 

extract weak periodical impulses from the vibration signals with heavy background noise. The 

optimal Morlet wavelet is constructed based on the optimization algorithm. The minimal 

value of Shannon entropy is the optimal selection of  . The optimal parameter is found 

as:         . Then, the SCS method is employed to further remove the noise and isolate the 

impulses. The extracted impulses are presented in Fig.2.a, from which it is observed that all 

the impulses immersed in noise are picked out.  

      
  (a)                                        (b) 

Fig. 2a. Result by MLE thresholding; 2b. Result by Donoho’s soft-thresholding. 

To further prove the superiority of the proposed method, we also processed the 

simulation signal using Donoho's ‘soft-thresholding de-noising’, in which db4 wavelet is 

employed as the basic wavelet. Its de-noising result is shown in Figure 2.b. Though several 

true impulses are extracted, a lot of fake impulses also exist, which would affect the 

recognition of true impulses. However, the proposed approach isolates all the true impulses, 

and no fake impulses exist in the result Figure 2.a. The obtained results have shown that the 

proposed approach is very effective in the extraction of weak periodical impulses under heavy 

noise, and its performance is much better than the traditional methods. 

8. EXPERIMENTAL RESULTS  

To investigate the effectiveness of SCS de-noising method a series of vibration signals 

collected from a test rig and from a real machine which is the hydraulic pump of NUR 

Reactor primary cooling loop system as shown in figures Figure 3 and Figure 4 were analyzed 

for detecting faults. Vibration signals are collected from accelerometer mounted on the 

bearing housing.   
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        Fig.3. Photograph of the test rig.               Fig.4. Tested hydraulic pump 

A radial acceleration signal was picked up from the top of the tested bearing casing by a 

B&K 4371 transducer. Afterward, the signal is amplified and band-pass filtered by a B&K 

charge amplifier into the frequency range from 0.2 Hz to 20 kHz and recorded on the dual 

channel frequency analyzer B&K 2133. Acquisitions were transferred to the PC where Matlab 

programs were implemented to execute signal analyses and wavelet transforms calculations. 

Fault characteristic frequencies of bearings for fixed outer race related to common failures are 

geometrically estimated and reported by below formulas as follows:  

  

   
 

 
  (  

 

  
    )                               

 

 
  (  

 

  
    )                  (  ) 

Where    is the shaft revolution frequency,    and    are respectively, the inner and outer race 

defect frequency,   is the number of rolling elements,   represents the contact angle,   and 

   are, respectively, the ball and the pitch diameters. Based on the geometric parameters and 

the rotational speed of ball bearings, fault characteristic frequencies of bearings are estimated 

and listed in the following Table 1.     

TABLE 1. CHARACTERISTICS OF THE TESTED BEARINGS 

Bearing type (Test rig bearing) 

         

(RCP bearing 1) 

         

(RCP bearing 2) 

         

Rotating speed (tr/min)                   

Number of rolling elements               

Rotating frequency                                        

Ball Passing Frequency Inner Race - 

BPFI 

            , 

              

                          

Ball passing Frequency Outer Race - 

BPFO 

            , 

              

                          

Time and spectral amplitude representing the effect of the crossing of the balls over 

artificial spall in the test rig bearing is presented in Figure 5. 
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Fig.5. Vibration signal of the tested bearing and Power spectrum of the vibration signal. 

 
Fig.6. Vibration signal waveform and power spectrum of RCP roller bearing. 

On the grounds of these observations, it appears clear that the effectiveness of the 

spectral analysis for the bearing diagnostics proves inadequate to operate correct monitoring. 

The bearing faults cannot be diagnosed with certainty since spectra provide peaks, located at 

the fault characteristic frequencies, whose amplitudes are comparable to the corresponding 

ones related to the bearing in sound condition. Noise prevails over the effect of periodic 

impulses. Thereby, Donoho's soft-thresholding de-noising has been used to process the 

signals. One can note that no periodic impact is highlighted as presented in Fig. 7.a and Fig. 

7.b below.  

     
  (a)                                                           (b) 

Fig. 7. The purified signals obtained by Donoho’s soft-thresholding. (a): Test rig bearing signal, (b): RCP bearing signal. 

Irregular intervals of the presented signal amplitude in Figure 7.a are not able to isolate 

the phenomenon by extracting characteristic defect period. However, through the inverse 

wavelet transform of the thresholded modulus, the reconstructed signal after de-noising by 

SCS method on the test rig bearing signal is shown in Figure 8.a. Distinct evenly spaced 

impulses can be observed from the reconstructed signal.    
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  (a)                                                         (b) 

Fig.8. The purified signals obtained by the de-noising method based on adaptive Morlet wavelet and SCS; (a): Test rig 

bearing signal, (b): RCP bearing signal 

The measured distance between two successive impulse peaks of the presented 

diagrams represents the characteristic defect period, i.e. the inverse of the characteristic 

frequency. Quasi-periodic intervals equal to 4.1 ms can be found in the figure. These quasi-

periodic intervals are equivalent to the inverse of the ball-passing frequency outer-race 

(BPFO) which is 141 Hz as listed in Table 1. Hence, it can be concluded that the impulses are 

caused by the outer-race defect. Finally, it is worthwhile to observe from Fig.8.a, that only 

defect-induced impulse clusters are retained in the reconstructed signal. This indicates the 

effectiveness of the proposed algorithm in cancelling out the environmental noise even with 

small defect.  

Thereby, the result of SCS de-noising method on RCP bearing signal is plotted in the 

Figure 8.b. One can observe on reconstructed signal using SCS de-noising method some 

random peaks without fixed periodicity, which are not related to faulty impulses. It can be 

concluded now that the reconstructed signal shown in Figure 8.b is the characterised signal 

pattern of the bearing without raceway defects on bearings. In view of that, by considering the 

results obtained, the proposed algorithm shows a great promise in highlighting the defect-

induced impact in the vibration signals for bearing fault diagnosis.     

9. CONCLUSION   

The wavelet de-noising method proposed in this paper not only employs the adaptive 

Morlet wavelet based beta-optimization, as the basic wavelet, but also utilizes prior 

information on the pdf of the signals to be identified. The new adaptive SCS thresholding rule 

is effective at extracting the impulsive features buried in the noisy signals even when the SNR 

is very low. In applications, the SCS thresholding method can be used directly to detect 

impulses, because the pdf of any impulse signal is always very sparse. such results helps the 

machine operators not only in detecting the existence of faults on bearing at its initial stage, 

but also in identifying the causes of faults by using the information of the time intervals which 

is provided by reconstructed signal.   
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